Se utiliza un sistema de software de mantenimiento predictivo para monitorear y analizar el rendimiento y la condición de las máquinas y equipos mientras están en funcionamiento. Con el empleo de técnicas avanzadas, este sistema software permite realizar el mantenimiento de la maquinaria de forma proactiva, previniendo fallos antes de que se produzcan. El sistema de software de mantenimiento predictivo tiene diversas aplicaciones, incluida la detección de variaciones de eficiencia del motor, la identificación de desequilibrios de potencia trifásicos causados por distorsión armónica y la detección de calor excesivo generado por cojinetes defectuosos.
Según Data Bridge Market Research, el Mercado de mantenimiento predictivo representó 3.923,85 millones de dólares en 2022 y se espera que alcance los 60.608,62 millones de dólares en 2030. Se espera que el mercado crezca con una tasa compuesta anual del 40,80% en el período previsto de 2023 a 2030.
“Creciente demanda para reducir las fallas de los equipos, los costos de mantenimiento y el tiempo de inactividad”
El crecimiento del mercado del mantenimiento predictivo está impulsado por la creciente necesidad de minimizar las fallas de los equipos, los gastos de mantenimiento y el tiempo de inactividad. El tiempo de inactividad del equipo se refiere al período en el que un equipo específico no está operativo debido a fallas imprevistas en el equipo. Estos tiempos de inactividad no planificados y frecuentes fallas en los equipos de maquinaria grande impiden las operaciones comerciales, lo que genera interrupciones temporales de la producción, sanciones financieras, pérdida de tiempo del personal y otros efectos perjudiciales. En consecuencia, se espera que la creciente demanda de reducir las fallas de los equipos, los costos de mantenimiento y el tiempo de inactividad impulse la adopción de soluciones de mantenimiento predictivo en el período de pronóstico.
¿Qué frena el crecimiento de el mantenimiento predictivo mercado?
"Altos requisitos de mantenimiento y actualización periódicos para mantener los sistemas actualizados"
Los sistemas de mantenimiento predictivo tienen una gran necesidad de mantenimiento y actualizaciones regulares. Debido a la naturaleza dinámica de los procesos industriales y las tecnologías en evolución, estos sistemas requieren atención continua para garantizar un rendimiento óptimo. Las actividades de mantenimiento periódicas, como la calibración de sensores, la validación de datos y las actualizaciones de software, son necesarias para mantener la precisión y la confiabilidad. Además, las actualizaciones periódicas del sistema son esenciales para incorporar nuevos algoritmos, mejorar las capacidades de análisis de datos y mantenerse actualizado con las tendencias emergentes en las prácticas de mantenimiento predictivo.
Segmentación: Mercado de mantenimiento predictivo de América del Norte
El mercado del mantenimiento predictivo está segmentado según los componentes, el modo de implementación, la integración del sistema, el tamaño de la organización, la vertical y las partes interesadas.
- Sobre la base de componentes, el mercado de mantenimiento predictivo se segmenta en soluciones, integradas, independientes, servicios, integración de sistemas, soporte y mantenimiento, consultoría.
- Según el modo de implementación, el mercado de mantenimiento predictivo se segmenta en la nube local.
- Sobre la base de la integración de sistemas, el mercado del mantenimiento predictivo se segmenta en soporte y mantenimiento y consultoría.
- Según el tamaño de la organización, el mercado del mantenimiento predictivo se segmenta en grandes empresas y pequeñas y medianas empresas (PYME).
- Según la vertical, el mercado del mantenimiento predictivo se segmenta en gobierno y defensa, manufactura, energía y servicios públicos, transporte y logística, atención médica y ciencias de la vida.
- Según las partes interesadas, el mercado de mantenimiento predictivo se segmenta en MRO, OEM/ODM e integradores de tecnología.
Perspectivas regionales: EE. UU. domina el mercado de mantenimiento predictivo
Estados Unidos domina el mercado del mantenimiento predictivo debido a las crecientes inversiones en tecnologías emergentes como el aprendizaje automático, la IoT y la inteligencia artificial, que mejoran los segmentos de soluciones y servicios de esta región. Además, la creciente adopción del mantenimiento predictivo por parte de la banca y las industrias de TI y telecomunicaciones hará crecer aún más el mercado de esta región.
Para saber más sobre la visita de estudio, https://www.databridgemarketresearch.com/reports/north-america-predictive-maintenance-market
Desarrollos recientes
- En 2022, Siemens, una empresa de tecnología con sede en Alemania centrada en transporte, atención sanitaria, industria e infraestructura, adquirió Senseye por un importe no revelado. Con esta adquisición, Senseye se convirtió en una filial de Siemens y se espera que fortalezca su posición en la cartera de servicios digitales.
Los actores clave más destacados que operan en el Mantenimiento predictivo El mercado incluye:
- Microsoft (Estados Unidos)
- IBM (Estados Unidos)
- SAP (Alemania)
- SAS Institute Inc. (EE. UU.)
- Software AG (Alemania)
- Cloud Software Group, Inc. (EE. UU.)
- Hewlett Packard Enterprise Development LP (EE. UU.)
- Altair Engineering Inc. (EE. UU.)
- Splunk Inc. (EE. UU.)
- Oráculo (Estados Unidos)
- Google (Estados Unidos)
- Amazon Web Services, Inc. (EE. UU.)
- General Electric (EE. UU.)
- Schneider Electric (Francia)
- Hitachi, Ltd. (Japón)
- PTC (EE. UU.)
- RapidMiner (Estados Unidos)
- Excelencia Operacional (OPEX) Group Ltd, (Reino Unido)
- DINGO Software Pty. Ltd. (Australia)
- CHIRON Suiza SA (Rusia)
Arriba están los actores clave cubiertos en el informe, para conocer una lista más exhaustiva de las empresas del mercado de mantenimiento predictivo en contacto. https://www.databridgemarketresearch.com/contact
Metodología de investigación: mercado de mantenimiento predictivo de América del Norte
La recopilación de datos y el análisis del año base se realizan mediante módulos de recopilación de datos con muestras de gran tamaño. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la cuota de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica extracción de datos, análisis del impacto de las variables de datos en el mercado y validación primaria (experto de la industria). Aparte de esto, los modelos de datos incluyen una cuadrícula de posicionamiento de proveedores, un análisis de la línea de tiempo del mercado, una descripción general y guía del mercado, una cuadrícula de posicionamiento de la empresa, un análisis de la participación de mercado de la empresa, estándares de medición, América del Norte versus análisis regional y de participación de los proveedores. Solicite una llamada de analista en caso de realizar más consultas.
