预测性维护市场提供尖端功能和显著优势。主要功能包括实时监控、数据分析和物联网集成。预测性维护使用先进的算法来预测设备故障,从而实现及时干预。其优势包括增加正常运行时间、降低维护成本和延长设备使用寿命。它最大限度地减少了意外故障,从而提高了运营效率和生产力。此外,它还优化了资源分配,确保在必要时执行维护任务,从而减少不必要的停机时间和维护费用。总体而言,预测性维护提高了工业机械的可靠性和性能。
根据 Data Bridge 市场研究公司的研究, 全球预测性维护 市场 2021 年的价值为 38.4 亿美元,预计到 2029 年将达到 360.1 亿美元,2022-2029 年预测期内的复合年增长率为 32.30%。
“行业数量的增加推动了市场的增长”
全球范围内行业数量的不断增长是预测性维护市场的重要驱动力。随着企业的扩张和发展,对高效且经济高效的维护解决方案的需求也在增加。尤其是新兴国家,由于其工业发展,对预测性维护的需求激增。这一趋势推动了预测性维护服务和技术的供需,创造了一个满足各行业维护需求的繁荣市场。
什么限制了 全球预测性维护市场?
“缺乏熟练劳动力限制了市场的增长”
预测性维护市场面临着一个明显的制约因素,即缺乏熟练劳动力。预测性维护解决方案的实际实施和管理需要具备数据分析、传感器技术和维护操作专业技能的人员。此类熟练工人的短缺可能会阻碍预测性维护计划的采用和成功,从而减缓市场增长。
细分:全球预测性维护市场
全球预测性维护市场根据组件、部署模式、组织规模、垂直和利益相关者进行细分。
- 根据组件,全球预测性维护市场细分为解决方案和服务。
- 根据部署模式,全球预测性维护市场分为云端和本地。
- 根据组织规模,全球预测性维护市场分为大型企业和中小型企业。
- 在垂直基础上,全球预测性维护市场细分为制造业、能源和公用事业、运输、政府、医疗保健、航空航天和国防等。
- 根据利益相关者,全球预测性维护市场分为 MRO、OEM/ODM 和技术集成商。
区域见解:北美有望主导全球预测性维护市场
预计北美将在预测性维护市场中占据重要份额。这一主导地位归功于该地区持续的技术进步。预测性维护解决方案提供商在各个地理区域的激增推动了市场扩张。随着行业参与者数量的增长,竞争、创新和预测性维护技术的采用也随之增加,从而促进了市场的整体增长和活力。
亚太地区将稳步增加预测性维护的采用率。该地区的新兴经济体正在经历大幅的工业增长,推动对先进维护解决方案的需求。此外,技术进步和通过适当的维护优化资产绩效的必要性是关键驱动因素。保持竞争力和利用最新技术创新优势的需求确保了亚太地区预测性维护的持续增长。
欲了解有关此次考察的更多信息,https://www.databridgemarketresearch.com/reports/global-predictive-maintenance-market
最近的发展
- 2021 年 7 月,施耐德电气推出了一款突破性的软件解决方案 EcoStruxure Triconex Safety View。它提供安全性和安全性的双重认证 网络安全使操作员能够监控影响威胁降低措施的旁路状态以及在高风险情况下对工厂安全运营至关重要的关键警告。这项创新通过单个软件包增强了工业安全和网络安全。
- 2021 年 5 月,SAS 研究院推出了 SAS Viya 平台,为数据和分析卓越奠定了基础。该平台将新的数据处理功能无缝整合到原生 SAS Viya 生态系统中。通过集成高级数据管理和分析功能,SAS 继续帮助组织利用数据驱动的洞察力来提高决策能力和运营效率。
全球预测性维护市场的主要参与者包括:
- 微软(美国)
- IBM(美国)
- SAP(德国)
- SAS Institute Inc.(美国)
- Software AG(德国)
- TIBCO Software Inc.(美国)
- 惠普企业发展有限公司 (美国)
- Altair Engineering Inc.(美国)
- Splunk Inc.(美国)
- 甲骨文 (美国)
- 谷歌(美国)
- 亚马逊网络服务公司(美国)
- 通用电气(美国)
- 施耐德电气(法国)
- 日立有限公司(日本)
- PTC(美国)
- RapidMiner, Inc.(美国)
- 卓越运营 (OPEX) 集团有限公司(英国)
- 澳洲野狗(澳大利亚)
- Factory5(俄罗斯)
以上是报告中涉及的关键参与者,要了解更多有关全球预测性维护市场公司联系的详尽列表, https://www.databridgemarketresearch.com/contact
研究方法:全球预测性维护市场
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析以及主要(行业专家)验证。除此之外,数据模型还包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、公司市场份额分析、测量标准、全球与区域以及供应商份额分析。如有进一步询问,请要求分析师致电。
