Press Release

Feb, 02 2024

Revolutionierende Technologie: Die Leistungsfähigkeit von Machine Learning als Service für nahtlose Innovation entfesseln

Machine Learning as a Service (MLaaS) ist ein Cloud-basiertes Modell, das Unternehmen den Zugriff auf und die Nutzung von Machine-Learning-Algorithmen und -Tools ohne internes Fachwissen ermöglicht. MLaaS-Anbieter bieten skalierbare Lösungen, mit denen Unternehmen Machine-Learning-Funktionen mühelos in ihre Anwendungen, Prozesse und Systeme integrieren können. Dieser Ansatz optimiert die Entwicklung, beschleunigt Innovationen und macht Machine Learning für verschiedene Branchen und Anwendungen zugänglich.

Zugriff auf den vollständigen Bericht unter  https://www.databridgemarketresearch.com/reports/spain-machine-learning-as-a-service-market

Data Bridge Market Research analysiert, dass der spanische Markt für Machine Learning as a Service , der im Jahr 2021 5,45 Milliarden US-Dollar betrug, bis 2029 voraussichtlich 79,34 Milliarden US-Dollar erreichen wird, bei einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 39,76 % im Prognosezeitraum 2022 bis 2029. Die proaktiven Richtlinien und Anreize der spanischen Regierung fördern die nahtlose Integration von Technologien für maschinelles Lernen, insbesondere MLaaS, und ermöglichen Unternehmen die Nutzung fortschrittlicher Analyse- und Automatisierungstechniken sowie die Förderung von Innovation und Wettbewerbsfähigkeit in verschiedenen Sektoren.

Wichtigste Ergebnisse der Studie

Markt für maschinelles Lernen als Dienstleistung

Webbasierte Anwendungsprogrammierschnittstellen (APIS) werden voraussichtlich die Wachstumsrate des Marktes vorantreiben

Webbasierte Anwendungsprogrammierschnittstellen (APIs) spielen im spanischen MLaaS-Markt eine zentrale Rolle, da sie Machine-Learning-Funktionen nahtlos in Webanwendungen integrieren. APIs ermöglichen eine effiziente Kommunikation zwischen Softwareanwendungen und ermöglichen Unternehmen die einfache Einbindung von Machine-Learning-Funktionen ohne aufwändige Programmierung. Diese Zugänglichkeit fördert die breite Akzeptanz in Spanien und ermöglicht Entwicklern die Integration anspruchsvoller Machine-Learning-Funktionen in ihre webbasierten Anwendungen. Dies fördert Innovationen und verbessert das Benutzererlebnis in verschiedenen Branchen.

Berichtsumfang und Marktsegmentierung

Berichtsmetrik

Details

Prognosezeitraum

2022 bis 2029

Basisjahr

2021

Historische Jahre

2020 (Anpassbar auf 2014–2019)

Quantitative Einheiten

Umsatz in Milliarden USD, Mengen in Einheiten, Preise in USD

Abgedeckte Segmente

Service (Managed Service, Professional, Professional Service), Geschäftsfunktion (Personalwesen, Vertrieb und Marketing, Finanzen und Betrieb), Bereitstellungsmodell (Cloud, vor Ort), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen), Anwendung (Medikamentenforschung, Betrugserkennung und Risikomanagement , Verarbeitung natürlicher Sprache , Marketing und Werbung, Sicherheit und Überwachung, Bilderkennung, prädiktive Analyse, Data Mining, erweiterte und virtuelle Realität ), Endbenutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, IT und Telekommunikation, Forschung und Lehre, Regierung und öffentlicher Sektor, Einzelhandel und E-Commerce , Fertigung, Gesundheitswesen und Pharmazeutik, Reisen und Logistik, Energie und Versorgung, Medien und Unterhaltung)

Abgedeckte Marktteilnehmer

Google (USA), Microsoft (USA), IBM (USA), SAP (Deutschland), Amazon Web Services, Inc. (USA)

Im Bericht behandelte Datenpunkte

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team kuratierte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Segmentanalyse:

Der spanische Markt für maschinelles Lernen als Dienstleistung  ist nach Dienstleistung, Geschäftsfunktion, Bereitstellungsmodell, Unternehmensgröße, Anwendung und Endbenutzer segmentiert.

  • Auf der Grundlage des Services ist der spanische Markt für maschinelles Lernen als Service  in Managed Service, Professional und Professional Service segmentiert.
  • Auf der Grundlage der Geschäftsfunktion  ist der spanische Markt für maschinelles Lernen als Dienstleistung in die Bereiche Personalwesen, Vertrieb und Marketing, Finanzen und Betrieb unterteilt.
  • Auf der Grundlage des Bereitstellungsmodells  ist der spanische Markt für maschinelles Lernen als Dienstleistung in Cloud und On-Premise segmentiert.
  • Auf der Grundlage der Unternehmensgröße  ist der spanische Markt für maschinelles Lernen als Dienstleistung in große Unternehmen sowie kleine und mittlere Unternehmen unterteilt.
  • Auf der Grundlage der Anwendung ist der spanische Markt für maschinelles Lernen als Dienstleistung  in die Bereiche Arzneimittelforschung, Betrugserkennung und Risikomanagement, Verarbeitung natürlicher Sprache, Marketing und Werbung, Sicherheit und Überwachung, Bilderkennung, prädiktive Analytik, Data Mining sowie erweiterte und virtuelle Realität unterteilt.
  • Auf der Grundlage des Endbenutzers  ist der spanische Markt für maschinelles Lernen als Dienstleistung in die Bereiche Banken, Finanzdienstleistungen und Versicherungen, IT und Telekommunikation, Forschung und Lehre, Regierung und öffentlicher Sektor, Einzelhandel und E-Commerce, Fertigung, Gesundheitswesen und Pharmazeutik, Reisen und Logistik, Energie und Versorgung sowie Medien und Unterhaltung segmentiert.

Hauptakteure

Data Bridge Market Research erkennt die folgenden Unternehmen als die wichtigsten Akteure im spanischen Markt für maschinelles Lernen als Dienstleistung an: Google (USA), Microsoft (USA), IBM (USA), SAP (Deutschland) und Amazon Web Services, Inc. (USA).

Spanien: Markt für maschinelles Lernen als Dienstleistung

Marktentwicklungen

  • Im Mai 2023 gab NVIDIA die Integration seiner KI-Unternehmenssoftware in Microsoft Azure Machine Learning bekannt. Ziel dieser Zusammenarbeit ist es, Azure-Kunden weltweit eine sichere, unternehmensreife Plattform zu bieten. Mit über 100 unterstützten NVIDIA AI Enterprise-Softwareschichten ermöglicht sie die beschleunigte Entwicklung, Bereitstellung und Verwaltung fortschrittlicher KI-Initiativen und bildet eine solide Grundlage für Unternehmen, die Spitzentechnologien nutzen.
  • Im September 2022 gründeten die Novartis Foundation, Microsoft AI for Health und die NYU School of Global Public Health das AI4HealthyCities Health Equity Network. Diese gemeinsame Initiative zielt darauf ab, Ungleichheiten in der Herzgesundheit durch den Einsatz von Datenanalyse und künstlicher Intelligenz zu bekämpfen. Die Allianz sucht nach innovativen Lösungen, um die gesundheitliche Chancengleichheit zu fördern und Ungleichheiten im kardiovaskulären Wohlbefinden zu beseitigen.
  • Im August 2022 erweiterte die Truist Corporation ihre digitalen Anlagedienstleistungen und brachte den Robo-Advisor Truist Invest und die Hybridlösung Truist Invest Pro auf den Markt. Durch die Kombination automatisierter Planung mit einer objektiven Umgebung richtet sich Truist an verschiedene Branchen wie Finanzen, Gesundheitswesen, Sport usw. Truist Invest Pro bietet Unternehmen die Flexibilität autonomer Entscheidungen und beratergesteuerter Empfehlungen und verbessert so ihre Anlagestrategien.
  • Im März 2022 führte H&M die Lagerautomatisierung von GreyOrange ein und nutzte dabei Roboter-Fulfillment-Systeme. Angespornt vom nachweislichen Erfolg von GreyOrange bei der Leistungs- und Effizienzsteigerung für andere Unternehmen, integrierte H&M die Technologie. GreyOrange-Roboter übernehmen nun verschiedene Lageraufgaben und spiegeln H&Ms Engagement für die Optimierung der Abläufe durch innovative Automatisierungslösungen wider.
  • Im Februar 2022 führte H2O.ai erweiterte H2O MLOps-Funktionen ein, die Machine-Learning-Workflows durch verbesserte Erklärbarkeit, Flexibilität und Konfigurationsmöglichkeiten erweitern. Diese Erweiterungen bieten Anwendern mehr Kontrolle, Governance und Skalierbarkeit und erhöhen so die Effizienz und Transparenz ihrer Machine-Learning-Prozesse. Die Weiterentwicklungen unterstreichen das Engagement von H2O.ai, Anwendern umfassende Tools für optimierte und effektive Machine-Learning-Operationen bereitzustellen.

Für detailliertere Informationen zum spanischen Marktbericht zum maschinellen Lernen als Dienstleistung klicken Sie hier –  https://www.databridgemarketresearch.com/reports/spain-machine-learning-as-a-service-market


Client Testimonials