Global Ai In Fintech Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
13.14 Billion
USD
765.34 Billion
2021
2029
| 2022 –2029 | |
| USD 13.14 Billion | |
| USD 765.34 Billion | |
|
|
|
|
Mercado global de inteligencia artificial en tecnología financiera, por componente (soluciones y servicios), modo de implementación (nube y local), aplicación (asistente virtual, análisis e informes empresariales, análisis del comportamiento del cliente y otros): tendencias de la industria y pronóstico hasta 2029.
Análisis y tamaño del mercado global de inteligencia artificial en tecnología financiera
La inteligencia artificial en fintech permite gestionar un gran volumen de datos para obtener información valiosa y mejorar la comprensión de los clientes y su comportamiento. Un número creciente de usuarios finales, pequeñas y medianas empresas, comprende cada vez más la importancia de integrar tecnologías avanzadas con los servicios financieros. RapidMiner, Inc. (EE. UU.), SAP SE (Alemania), SAS Institute Inc. (EE. UU.), Microsoft (EE. UU.), Google, LLC (EE. UU.) y Hewlett Packard Enterprise Development LP (EE. UU.) son algunos de los principales actores que operan en este mercado.
- Data Bridge Market Research analiza que el valor del mercado de inteligencia artificial en tecnología financiera, que fue de USD 13.140 millones en 2021, se espera que alcance los USD 765.340 millones para 2029, con una tasa de crecimiento anual compuesta (TCAC) del 66,20 % durante el período de pronóstico. La nube representa el segmento de implementación más grande en el mercado de inteligencia artificial en tecnología financiera debido al creciente número de pequeñas y medianas empresas.
Definición del mercado global de inteligencia artificial en tecnología financiera
Su nombre indica claramente que la tecnología financiera o fintech consiste en la incorporación de tecnologías avanzadas, como la inteligencia artificial, a los servicios financieros, lo que ayuda a proteger contra actividades fraudulentas. La función de la inteligencia artificial en fintech es facilitar el funcionamiento de los robo-advisors para brindar servicios de planificación financiera.
Alcance del informe y segmentación del mercado
|
Métrica del informe |
Detalles |
|
Período de pronóstico |
2022 a 2029 |
|
Año base |
2021 |
|
Años históricos |
2020 (personalizable para 2019-2014) |
|
Unidades cuantitativas |
Ingresos en miles de millones de USD, volúmenes en unidades, precios en USD |
|
Segmentos cubiertos |
Componente (Soluciones y Servicios), Modo de Desarrollo (Nube y Local), Aplicación (Asistente Virtual, Análisis e Informes de Negocios, Análisis del Comportamiento del Cliente, etc.) |
|
Países cubiertos |
EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, Resto de Europa en Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA), Brasil, Argentina y Resto de América del Sur como parte de América del Sur. |
|
Actores del mercado cubiertos |
BigML, Inc. (EE. UU.), Cisco Systems, Inc. (EE. UU.), FICO (EE. UU.), Hewlett Packard Enterprise Development LP (EE. UU.), RapidMiner, Inc. (EE. UU.), SAP SE (Alemania), SAS Institute Inc. (EE. UU.), Microsoft (EE. UU.), Google, LLC (EE. UU.), Salesforce.com Inc. (EE. UU.), IBM (EE. UU.), Intel Corporation (EE. UU.), Amazon Web Services, Inc. (EE. UU.), Inbenta Technologies (EE. UU.), IPsoft (EE. UU.), Nuance Communications (EE. UU.) y ComplyAdvantage (Reino Unido). |
|
Oportunidades de mercado |
|
Dinámica del mercado global de inteligencia artificial en tecnología financiera
Esta sección aborda la comprensión de los factores impulsores, las ventajas, las oportunidades, las limitaciones y los desafíos del mercado. Todo esto se analiza en detalle a continuación:
Conductores:
- El crecimiento de la inversión en investigación y desarrollo abrirá camino a la innovación
El creciente número de colaboraciones estratégicas en el mercado ha impulsado un aumento de los fondos destinados al crecimiento y desarrollo de tecnología y maquinaria avanzada y automatizada contra actividades fraudulentas. Además, el aumento de la inversión en competencias de investigación y desarrollo allanará el camino para la innovación en tecnologías de la información. La creciente integración de la inteligencia artificial y el aprendizaje automático también resultará un impulso para el mercado.
- Aumento del número de industrias a nivel mundial para inducir una mayor demanda y oferta en los países emergentes
El creciente número de pequeñas y medianas empresas (PYMES) a nivel mundial es uno de los principales factores que impulsan el crecimiento del mercado. En otras palabras, el aumento de la cantidad de sectores como la banca, los servicios financieros y los seguros (BFSI), la educación, la energía y los servicios públicos, el gobierno y el sector público, la salud y las ciencias de la vida, la manufactura, el comercio minorista y el comercio electrónico, las telecomunicaciones y las TI influye directamente en la tasa de crecimiento del mercado.
- El creciente número de ciberataques presenta numerosas oportunidades para las pequeñas empresas
Debido al auge económico mundial, la industria de las tecnologías de la información y la comunicación (TIC) tiene un amplio margen de crecimiento. Sin embargo, con el creciente volumen de datos organizacionales, aumenta la actividad cibercriminal. Esto podría socavar la imagen corporativa de una organización y manipular sus registros. Esto generará un amplio margen de crecimiento.
Oportunidades:
- Los firewalls basados en la nube presentan muchas oportunidades
La creciente urbanización, modernización y globalización impulsan el crecimiento del valor del mercado. En otras palabras, una mayor concienciación sobre los beneficios de los firewalls en la nube entre las pequeñas y medianas empresas, especialmente en las economías en desarrollo, para el desarrollo de la infraestructura, brindará numerosas oportunidades para el crecimiento del mercado.
La creciente infraestructura industrial , la prevalencia de un número limitado de proveedores que ofrecen servicios, la creciente adopción de la gestión centralizada de políticas y la instalación simplificada, y el mayor volumen de datos organizacionales son otros factores determinantes del crecimiento del mercado. Además, la creciente proliferación de internet de alta velocidad en las economías en desarrollo ampliará las oportunidades de negocio para los actores del mercado en el período previsto de 2022 a 2029. Asimismo, la creciente necesidad de fortalecer la red empresarial contra ataques no autorizados y sin precedentes, y el creciente uso de los servicios gracias a la escalabilidad fluida impulsarán aún más el crecimiento futuro del mercado.
Restricciones/desafíos de la Inteligencia Artificial Global en el Mercado Fintech
- Aumento del número de regulaciones para limitar el alcance del crecimiento a largo plazo
El creciente número de cumplimientos normativos, junto con la limitada experiencia técnica, obstaculizará el crecimiento del mercado. Asimismo, la falta de consultores cualificados para desarrollar inteligencia artificial en fintech reducirá el potencial de crecimiento del mercado. Además, la suspensión de la actividad comercial debido a la pandemia de coronavirus volverá a obstaculizarlo.
- Las complejidades plantearán una amenaza para la demanda del mercado, que crece sin precedentes
Las complejidades asociadas con la implementación de modelos basados en la nube dificultarán el crecimiento del mercado. Además, la penetración de estos modelos se limita a las grandes empresas, lo que frenará aún más dicho crecimiento.
Además, la falta de concienciación en las regiones subdesarrolladas y los altos costos asociados a su implementación limitarán el crecimiento del mercado. La falta de infraestructuras sólidas en las economías atrasadas y la escasa preocupación por la seguridad también afectarán la tasa de crecimiento del mercado.
Este informe sobre el mercado de inteligencia artificial en fintech proporciona detalles sobre los últimos desarrollos, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, cuota de mercado, impacto de los actores del mercado nacional y local, análisis de oportunidades en términos de segmentos de ingresos emergentes, cambios en las regulaciones del mercado, análisis estratégico del crecimiento del mercado, tamaño del mercado, crecimiento de las categorías de mercado, nichos de aplicación y dominio, aprobaciones y lanzamientos de productos, expansiones geográficas e innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado de inteligencia artificial en fintech, contacte con Data Bridge Market Research para obtener un informe analítico . Nuestro equipo le ayudará a tomar decisiones informadas para impulsar el crecimiento del mercado.
El impacto de la COVID-19 en la inteligencia artificial en el mercado fintech
El reciente brote de coronavirus ha sido un impulso para el mercado. La pandemia ha provocado la suspensión de la actividad comercial y ha provocado interrupciones en las cadenas de suministro globales, restricciones fronterizas y restricciones de viaje por parte de los organismos gubernamentales. Esto ha propiciado una transición hacia el teletrabajo en bancos y agencias fintech. Además, la rápida adopción de herramientas de inteligencia artificial y aprendizaje automático en las organizaciones bancarias para realizar tareas críticas a nivel mundial generó un sólido potencial de crecimiento para el mercado. Asimismo, a finales de 2020, las empresas globales experimentaron un aumento de la inversión en soluciones en la nube para facilitar el teletrabajo.
Desarrollos recientes
- En abril de 2020, Fenergo, el proveedor de soluciones de transformación digital, recorrido del cliente y gestión del ciclo de vida del cliente (CLM) para instituciones financieras, e IBM firmaron un acuerdo de fabricación de equipos originales (OEM) que puede permitir a las empresas colaborar en soluciones que puedan ayudar a los clientes a abordar la multitud de riesgos financieros que enfrentan.
- En mayo de 2020, Sentifi AG anunció la ampliación de su análisis alternativo basado en datos para identificar oportunidades de inversión y gestionar riesgos. La nueva solución de análisis de Sentifi incluye la detección del sector, valores atípicos de la industria, eventos ESG con posible impacto en la valoración de activos y tendencias de temas de inversión en tiempo real, ofreciendo a los inversores la posibilidad de detectar valores atípicos en sus carteras.
Alcance del mercado global de inteligencia artificial en tecnología financiera
El mercado de la inteligencia artificial en tecnología financiera se segmenta según sus componentes, modos de implementación y aplicaciones. El crecimiento de estos segmentos le permitirá analizar segmentos de crecimiento reducido en las industrias y brindar a los usuarios una valiosa visión general del mercado y perspectivas que les permitan tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.
Componente
- Soluciones
- Servicios
Según sus componentes, la inteligencia artificial en el mercado fintech se segmenta en soluciones y servicios. En cuanto a las soluciones, el mercado se segmenta a su vez en herramientas y plataformas de software. En cuanto a los servicios, el mercado se segmenta a su vez en gestionado y profesional.
Modo de implementación
- Nube
- En las instalaciones
Según el modo de implementación, la inteligencia artificial en el mercado fintech se ha segmentado en nube y local.
Solicitud
- Asistente virtual
- Análisis y generación de informes empresariales
- Análisis del comportamiento del cliente
- Otros
Sobre la base de la aplicación, la inteligencia artificial en el mercado fintech se ha segmentado en asistente virtual, análisis e informes comerciales, análisis del comportamiento del cliente y otros.
Análisis y perspectivas regionales del mercado de inteligencia artificial en tecnología financiera
Se analiza el mercado de inteligencia artificial en tecnología financiera y se proporcionan información y tendencias del tamaño del mercado por país, componente, modo de implementación y aplicación como se mencionó anteriormente.
Los países cubiertos en el informe del mercado de inteligencia artificial en fintech son EE. UU., Canadá y México en América del Norte, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, Resto de Europa en Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico (APAC) en Asia-Pacífico (APAC), Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, Resto de Medio Oriente y África (MEA) como parte de Medio Oriente y África (MEA), Brasil, Argentina y Resto de América del Sur como parte de América del Sur.
América del Norte está dominando el mercado debido a la sólida presencia de destacados proveedores de software y sistemas de inteligencia artificial, la inversión combinada de organizaciones gubernamentales y privadas para el desarrollo y crecimiento de las actividades de investigación y desarrollo, mientras que se espera que la región de Asia y el Pacífico crezca en el período de pronóstico de 2022 a 2029 debido al creciente avance en la tecnología junto con la creciente necesidad de prevenir los delitos cibernéticos.
La sección de países del informe también presenta los factores que impactan cada mercado y los cambios en la regulación del mercado que impactan las tendencias actuales y futuras. Datos como el análisis de la cadena de valor aguas abajo y aguas arriba, las tendencias técnicas, el análisis de las cinco fuerzas de Porter y los estudios de caso son algunos de los indicadores utilizados para pronosticar el escenario del mercado en cada país. Además, se consideran la presencia y disponibilidad de marcas globales y los desafíos que enfrentan debido a la alta o escasa competencia de marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales, al proporcionar un análisis de pronóstico de los datos nacionales.
Análisis del panorama competitivo y la participación de mercado de la inteligencia artificial en las tecnologías financieras
El panorama competitivo del mercado de la inteligencia artificial en tecnología financiera ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de las empresas en el mercado de la inteligencia artificial en tecnología financiera.
Algunos de los principales actores que operan en el mercado de inteligencia artificial en fintech son:
- BigML, Inc. (EE. UU.)
- Cisco Systems, Inc. (EE. UU.)
- FICO (EE. UU.)
- Hewlett Packard Enterprise Development LP (EE. UU.)
- RapidMiner, Inc. (EE. UU.)
- SAP SE (Alemania)
- SAS Institute Inc. (EE. UU.)
- Microsoft (EE. UU.)
- Google, LLC (EE. UU.)
- Salesforce.com Inc. (EE. UU.)
- IBM (EE.UU.)
- Intel Corporation (EE. UU.)
- Amazon Web Services, Inc. (EE. UU.)
- Inbenta Technologies (EE. UU.)
- IPsoft (EE. UU.)
- Nuance Communications (EE. UU.)
- ComplyAdvantage (Reino Unido)
Metodología de investigación: Inteligencia artificial global en el mercado fintech
La recopilación de datos y el análisis del año base se realizan mediante módulos con muestras de gran tamaño. Esta etapa incluye la obtención de información de mercado o datos relacionados a través de diversas fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos en el pasado. Asimismo, comprende el análisis de las inconsistencias de información detectadas en las diferentes fuentes. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. El análisis de la cuota de mercado y el análisis de tendencias clave son factores clave para el éxito del informe de mercado. Para obtener más información, solicite una llamada con un analista o envíe su consulta.
La metodología de investigación clave que utiliza el equipo de investigación de DBMR es la triangulación de datos, que incluye la minería de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (por parte de expertos del sector). Además, los modelos de datos incluyen la Matriz de Posicionamiento de Proveedores, el Análisis Cronológico del Mercado, la Visión General y Guía del Mercado, la Matriz de Posicionamiento de la Empresa, el Análisis de Patentes, el Análisis de Precios, el Análisis de la Participación de Mercado de la Empresa, los Estándares de Medición, el Análisis Global vs. Regional y el Análisis de la Participación de Proveedores.
Para saber más sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 MULTIVARIATE MODELLING
2.2.6 STANDARDS OF MEASUREMENT
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 SOLUTION
6.2.1 SOFTWARE TOOL
6.2.1.1. DATA DISCOVERY
6.2.1.2. DATA QUALITY AND DATA GOVERNANCE
6.2.1.3. DATA VISUALIZATION
6.2.2 PLATFORM
6.3 SERVICES
6.3.1 MANAGED SERVICES
6.3.2 PROFESSIONAL SERVICES
7 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY DEPLOYMENT MODE
7.1 OVERVIEW
7.2 CLOUD
7.3 ON-PREMISE
8 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY TECHNOLOGY
8.1 OVERVIEW
8.2 MACHINE LEARNING
8.3 NLP
8.4 DEEP LEARNING
8.5 OTHERS
9 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY APPLICATION
9.1 OVERVIEW
9.2 VIRTUAL ASSISTANT
9.2.1 MARKET BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 BUSINESS ANALYTICS AND REPORTING
9.3.1 MARKET BY TYPE
9.3.1.1. REGULATORY AND COMPLIANCE MANAGEMENT
9.3.1.2. PREDICTIVE ANALYTICS
9.3.2 MARKET BY DEPLOYMENT MODE
9.3.2.1. CLOUD
9.3.2.2. ON-PREMISE
9.4 CUSTOMER BEHAVIOURAL ANALYTICS
9.4.1 MARKET BY TYPE
9.4.1.1. CREDIT SCORING
9.4.1.2. ASSET AND PORTFOLIO MANAGEMENT
9.4.1.3. DEBT COLLECTION
9.4.1.4. INSURANCE PREMIUM
9.4.2 MARKET BY DEPLOYMENT MODE
9.4.2.1. CLOUD
9.4.2.2. ON-PREMISE
9.5 OTHERS
9.5.1 MARKET BY DEPLOYMENT MODE
9.5.1.1. CLOUD
9.5.1.2. ON-PREMISE
10 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, BY REGION
GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
10.1 NORTH AMERICA
10.1.1 U.S.
10.1.2 CANADA
10.1.3 MEXICO
10.2 EUROPE
10.2.1 GERMANY
10.2.2 FRANCE
10.2.3 U.K.
10.2.4 ITALY
10.2.5 SPAIN
10.2.6 RUSSIA
10.2.7 TURKEY
10.2.8 BELGIUM
10.2.9 NETHERLANDS
10.2.10 SWITZERLAND
10.2.11 REST OF EUROPE
10.3 ASIA PACIFIC
10.3.1 JAPAN
10.3.2 CHINA
10.3.3 SOUTH KOREA
10.3.4 INDIA
10.3.5 AUSTRALIA
10.3.6 SINGAPORE
10.3.7 THAILAND
10.3.8 MALAYSIA
10.3.9 INDONESIA
10.3.10 PHILIPPINES
10.3.11 REST OF ASIA PACIFIC
10.4 SOUTH AMERICA
10.4.1 BRAZIL
10.4.2 ARGENTINA
10.4.3 REST OF SOUTH AMERICA
10.5 MIDDLE EAST AND AFRICA
10.5.1 SOUTH AFRICA
10.5.2 EGYPT
10.5.3 SAUDI ARABIA
10.5.4 U.A.E
10.5.5 ISRAEL
10.5.6 REST OF MIDDLE EAST AND AFRICA
11 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET,COMPANY LANDSCAPE
11.1 COMPANY SHARE ANALYSIS: GLOBAL
11.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
11.3 COMPANY SHARE ANALYSIS: EUROPE
11.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
11.5 MERGERS & ACQUISTIONS
11.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
11.7 EXPANSIONS
11.8 REGULATORY CHANGES
11.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
12 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, SWOT AND DBMR ANALYSIS
13 GLOBAL ARTIFICIAL INTELLIGENCE IN FINTECH MARKET, COMPANY PROFILE
13.1 IBM
13.1.1 COMPANY SNAPSHOT
13.1.2 REVENUE ANALYSIS
13.1.3 GEOGRAPHIC PRESENCE
13.1.4 PRODUCT PORTFOLIO
13.1.5 RECENT DEVELOPMENTS
13.2 INTEL CORPORATION
13.2.1 COMPANY SNAPSHOT
13.2.2 REVENUE ANALYSIS
13.2.3 GEOGRAPHIC PRESENCE
13.2.4 PRODUCT PORTFOLIO
13.2.5 RECENT DEVELOPMENTS
13.3 IPSOFT INC
13.3.1 COMPANY SNAPSHOT
13.3.2 REVENUE ANALYSIS
13.3.3 GEOGRAPHIC PRESENCE
13.3.4 PRODUCT PORTFOLIO
13.3.5 RECENT DEVELOPMENTS
13.4 COMPLY ADVANTAGE
13.4.1 COMPANY SNAPSHOT
13.4.2 REVENUE ANALYSIS
13.4.3 GEOGRAPHIC PRESENCE
13.4.4 PRODUCT PORTFOLIO
13.4.5 RECENT DEVELOPMENTS
13.5 SAMSUNG
13.5.1 COMPANY SNAPSHOT
13.5.2 REVENUE ANALYSIS
13.5.3 GEOGRAPHIC PRESENCE
13.5.4 PRODUCT PORTFOLIO
13.5.5 RECENT DEVELOPMENTS
13.6 NARRATIVE SCIENCE
13.6.1 COMPANY SNAPSHOT
13.6.2 REVENUE ANALYSIS
13.6.3 GEOGRAPHIC PRESENCE
13.6.4 PRODUCT PORTFOLIO
13.6.5 RECENT DEVELOPMENTS
13.7 MICROSOFT
13.7.1 COMPANY SNAPSHOT
13.7.2 REVENUE ANALYSIS
13.7.3 GEOGRAPHIC PRESENCE
13.7.4 PRODUCT PORTFOLIO
13.7.5 RECENT DEVELOPMENTS
13.8 AMAZON WEB SERVICES
13.8.1 COMPANY SNAPSHOT
13.8.2 REVENUE ANALYSIS
13.8.3 GEOGRAPHIC PRESENCE
13.8.4 PRODUCT PORTFOLIO
13.8.5 RECENT DEVELOPMENTS
13.9 NUANCE COMMUNICATIONS
13.9.1 COMPANY SNAPSHOT
13.9.2 REVENUE ANALYSIS
13.9.3 GEOGRAPHIC PRESENCE
13.9.4 PRODUCT PORTFOLIO
13.9.5 RECENT DEVELOPMENTS
13.1 GOOGLE
13.10.1 COMPANY SNAPSHOT
13.10.2 REVENUE ANALYSIS
13.10.3 GEOGRAPHIC PRESENCE
13.10.4 PRODUCT PORTFOLIO
13.10.5 RECENT DEVELOPMENTS
13.11 INBENTA TECHNOLOGIES
13.11.1 COMPANY SNAPSHOT
13.11.2 REVENUE ANALYSIS
13.11.3 GEOGRAPHIC PRESENCE
13.11.4 PRODUCT PORTFOLIO
13.11.5 RECENT DEVELOPMENTS
13.12 SALESFORCE.COM
13.12.1 COMPANY SNAPSHOT
13.12.2 REVENUE ANALYSIS
13.12.3 GEOGRAPHIC PRESENCE
13.12.4 PRODUCT PORTFOLIO
13.12.5 RECENT DEVELOPMENTS
13.13 NEXT IT CORP.
13.13.1 COMPANY SNAPSHOT
13.13.2 REVENUE ANALYSIS
13.13.3 GEOGRAPHIC PRESENCE
13.13.4 PRODUCT PORTFOLIO
13.13.5 RECENT DEVELOPMENTS
13.14 ONFIDO
13.14.1 COMPANY SNAPSHOT
13.14.2 REVENUE ANALYSIS
13.14.3 GEOGRAPHIC PRESENCE
13.14.4 PRODUCT PORTFOLIO
13.14.5 RECENT DEVELOPMENTS
13.15 RIPPLE LABS INC.
13.15.1 COMPANY SNAPSHOT
13.15.2 REVENUE ANALYSIS
13.15.3 GEOGRAPHIC PRESENCE
13.15.4 PRODUCT PORTFOLIO
13.15.5 RECENT DEVELOPMENTS
13.16 ACTIVE.AI
13.16.1 COMPANY SNAPSHOT
13.16.2 REVENUE ANALYSIS
13.16.3 GEOGRAPHIC PRESENCE
13.16.4 PRODUCT PORTFOLIO
13.16.5 RECENT DEVELOPMENTS
13.17 TIBCO SOFTWARE (ALPINE DATA LABS)
13.17.1 COMPANY SNAPSHOT
13.17.2 REVENUE ANALYSIS
13.17.3 GEOGRAPHIC PRESENCE
13.17.4 PRODUCT PORTFOLIO
13.17.5 RECENT DEVELOPMENTS
13.18 TRIFACTA SOFTWARE INC.
13.18.1 COMPANY SNAPSHOT
13.18.2 REVENUE ANALYSIS
13.18.3 GEOGRAPHIC PRESENCE
13.18.4 PRODUCT PORTFOLIO
13.18.5 RECENT DEVELOPMENTS
13.19 DATA MINR INC.
13.19.1 COMPANY SNAPSHOT
13.19.2 REVENUE ANALYSIS
13.19.3 GEOGRAPHIC PRESENCE
13.19.4 PRODUCT PORTFOLIO
13.19.5 RECENT DEVELOPMENTS
13.2 ZEITGOLD GMBH
13.20.1 COMPANY SNAPSHOT
13.20.2 REVENUE ANALYSIS
13.20.3 GEOGRAPHIC PRESENCE
13.20.4 PRODUCT PORTFOLIO
13.20.5 RECENT DEVELOPMENTS
13.21 SIFT SCIENCE INC.
13.21.1 COMPANY SNAPSHOT
13.21.2 REVENUE ANALYSIS
13.21.3 GEOGRAPHIC PRESENCE
13.21.4 PRODUCT PORTFOLIO
13.21.5 RECENT DEVELOPMENTS
13.22 PEFIN HOLDINGS LLC
13.22.1 COMPANY SNAPSHOT
13.22.2 REVENUE ANALYSIS
13.22.3 GEOGRAPHIC PRESENCE
13.22.4 PRODUCT PORTFOLIO
13.22.5 RECENT DEVELOPMENTS
13.23 BETTERMENT HOLDINGS
13.23.1 COMPANY SNAPSHOT
13.23.2 REVENUE ANALYSIS
13.23.3 GEOGRAPHIC PRESENCE
13.23.4 PRODUCT PORTFOLIO
13.23.5 RECENT DEVELOPMENTS
13.24 WEALTHFRONT INC.
13.24.1 COMPANY SNAPSHOT
13.24.2 REVENUE ANALYSIS
13.24.3 GEOGRAPHIC PRESENCE
13.24.4 PRODUCT PORTFOLIO
13.24.5 RECENT DEVELOPMENTS
13.25 SENTIFI AG
13.25.1 COMPANY SNAPSHOT
13.25.2 REVENUE ANALYSIS
13.25.3 GEOGRAPHIC PRESENCE
13.25.4 PRODUCT PORTFOLIO
13.25.5 RECENT DEVELOPMENTS
13.26 AYASDI
13.26.1 COMPANY SNAPSHOT
13.26.2 REVENUE ANALYSIS
13.26.3 GEOGRAPHIC PRESENCE
13.26.4 PRODUCT PORTFOLIO
13.26.5 RECENT DEVELOPMENTS
13.27 BRIGHTERION
13.27.1 COMPANY SNAPSHOT
13.27.2 REVENUE ANALYSIS
13.27.3 GEOGRAPHIC PRESENCE
13.27.4 PRODUCT PORTFOLIO
13.27.5 RECENT DEVELOPMENTS
13.28 APPZEN
13.28.1 COMPANY SNAPSHOT
13.28.2 REVENUE ANALYSIS
13.28.3 GEOGRAPHIC PRESENCE
13.28.4 PRODUCT PORTFOLIO
13.28.5 RECENT DEVELOPMENTS
13.29 NEXT IT
13.29.1 COMPANY SNAPSHOT
13.29.2 REVENUE ANALYSIS
13.29.3 GEOGRAPHIC PRESENCE
13.29.4 PRODUCT PORTFOLIO
13.29.5 RECENT DEVELOPMENTS
13.3 AIDA TECHNOLOGIES
13.30.1 COMPANY SNAPSHOT
13.30.2 REVENUE ANALYSIS
13.30.3 GEOGRAPHIC PRESENCE
13.30.4 PRODUCT PORTFOLIO
13.30.5 RECENT DEVELOPMENTS
14 CONCLUSION
15 QUESTIONNAIRE
16 RELATED REPORTS
17 ABOUT DATA BRIDGE MARKET RESEARCH
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

