Press Release

Feb, 02 2024

Révolutionner la technologie : exploiter la puissance de l'apprentissage automatique en tant que service pour une innovation transparente

Le Machine Learning as a Service (MLaaS) est un modèle cloud qui permet aux entreprises d'accéder et d'utiliser des algorithmes et des outils de Machine Learning sans expertise interne. Les fournisseurs de MLaaS proposent des solutions évolutives permettant aux organisations d'intégrer facilement des fonctionnalités de Machine Learning à leurs applications, processus et systèmes. Cette approche simplifie le développement, accélère l'innovation et démocratise le Machine Learning, le rendant accessible à divers secteurs et applications.

Accéder au rapport complet sur  https://www.databridgemarketresearch.com/reports/spain-machine-learning-as-a-service-market

Data Bridge Market Research analyse que le marché espagnol du Machine Learning as a Service , qui était de 5,45 milliards USD en 2021, devrait atteindre 79,34 milliards USD d'ici 2029, à un TCAC de 39,76 % au cours de la période de prévision 2022 à 2029. Les politiques et incitations proactives du gouvernement espagnol favorisent l'intégration transparente des technologies d'apprentissage automatique, en particulier MLaaS, permettant aux entreprises de tirer parti de l'analyse et de l'automatisation avancées, favorisant ainsi l'innovation et la compétitivité dans divers secteurs.

Principales conclusions de l'étude

Marché de l'apprentissage automatique en tant que service

L'interface de programmation d'applications Web (APIS) devrait stimuler le taux de croissance du marché

Les interfaces de programmation d'applications (API) web jouent un rôle essentiel sur le marché espagnol du MLaaS en intégrant de manière transparente des fonctionnalités de machine learning aux applications web. Les API facilitent la communication entre les applications logicielles, permettant aux entreprises d'intégrer facilement des fonctionnalités de machine learning sans codage complexe. Cette accessibilité favorise une adoption généralisée en Espagne, permettant aux développeurs d'intégrer des fonctionnalités de machine learning sophistiquées à leurs applications web, favorisant ainsi l'innovation et améliorant l'expérience utilisateur dans divers secteurs.

Portée du rapport et segmentation du marché

Rapport métrique

Détails

Période de prévision

2022 à 2029

Année de base

2021

Années historiques

2020 (personnalisable de 2014 à 2019)

Unités quantitatives

Chiffre d'affaires en milliards USD, volumes en unités, prix en USD

Segments couverts

Service (service géré, professionnel, service professionnel), fonction commerciale (ressources humaines, ventes et marketing, finances et exploitation), modèle de déploiement (cloud, sur site), taille de l'organisation (grande organisation, petite et moyenne organisation), application (découverte de médicaments, détection de fraude et gestion des risques , traitement du langage naturel , marketing et publicité, sécurité et surveillance, reconnaissance d'images, analyse prédictive, exploration de données, réalité augmentée et virtuelle ), utilisateur final (banque, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique , fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, médias et divertissement)

Acteurs du marché couverts

Google (États-Unis), Microsoft (États-Unis), IBM (États-Unis), SAP (Allemagne), Amazon Web Services, Inc. (États-Unis)

Points de données couverts dans le rapport

Outre les informations sur le marché telles que la valeur marchande, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.

Analyse des segments :

Le marché espagnol de l'apprentissage automatique en tant que service  est segmenté sur la base du service, de la fonction commerciale, du modèle de déploiement, de la taille de l'organisation, de l'application et de l'utilisateur final.

  • Sur la base du service, le marché espagnol de l'apprentissage automatique en tant que service  est segmenté en services gérés, professionnels et services professionnels.
  • Sur la base de la fonction commerciale, le  marché espagnol de l'apprentissage automatique en tant que service est segmenté en ressources humaines, ventes et marketing, finances et opérations.
  • Sur la base du modèle de déploiement, le marché espagnol de l'apprentissage automatique en tant que service  est segmenté en cloud et sur site
  • Sur la base de la taille de l'organisation, le marché espagnol de l'apprentissage automatique en tant que service  est segmenté en grandes organisations et en petites et moyennes organisations.
  • Sur la base des applications, le  marché espagnol de l'apprentissage automatique en tant que service est segmenté en découverte de médicaments, détection de fraude et gestion des risques, traitement du langage naturel, marketing et publicité, sécurité et surveillance, reconnaissance d'images, analyse prédictive, exploration de données et réalité augmentée et virtuelle.
  • Sur la base de l'utilisateur final, le marché espagnol de l'apprentissage automatique en tant que service  est segmenté en services bancaires, services financiers et assurances, informatique et télécommunications, recherche et enseignement, gouvernement et secteur public, vente au détail et commerce électronique, fabrication, soins de santé et produits pharmaceutiques, voyages et logistique, énergie et services publics, et médias et divertissement.

Acteurs majeurs

Data Bridge Market Research reconnaît les entreprises suivantes comme les principaux acteurs du marché espagnol de l'apprentissage automatique en tant que service sur le marché espagnol de l'apprentissage automatique en tant que service : Google (États-Unis), Microsoft (États-Unis), IBM (États-Unis), SAP (Allemagne), Amazon Web Services, Inc. (États-Unis)

Marché espagnol de l'apprentissage automatique en tant que service

Évolution du marché

  • En mai 2023, NVIDIA a annoncé l'intégration de son logiciel d'IA d'entreprise à Azure Machine Learning de Microsoft. Cette collaboration vise à offrir aux clients Azure du monde entier une plateforme sécurisée et adaptée aux entreprises. Avec plus de 100 couches logicielles NVIDIA AI Enterprise prises en charge, elle accélère le développement, le déploiement et la gestion des initiatives d'IA avancées, consolidant ainsi une base solide pour les entreprises exploitant des technologies de pointe.
  • En septembre 2022, la Fondation Novartis, Microsoft AI for Health et la NYU School of Global Public Health ont lancé le réseau AI4HealthyCities Health Equity Network. Cette initiative collaborative vise à lutter contre les inégalités en santé cardiovasculaire en s'appuyant sur l'analyse de données et l'intelligence artificielle. L'alliance recherche des solutions innovantes pour promouvoir l'équité en santé et remédier aux disparités en matière de bien-être cardiovasculaire.
  • En août 2022, Truist Corporation a élargi ses services d'investissement numériques en lançant Truist Invest, un robot-conseiller, et Truist Invest Pro, une solution hybride. Associant planification automatisée et environnement objectif, elle s'adresse à des secteurs variés tels que la finance, la santé, le sport, etc. Truist Invest Pro offre aux entreprises la flexibilité d'une prise de décision autonome et des recommandations guidées par un conseiller, améliorant ainsi leurs stratégies d'investissement.
  • En mars 2022, H&M a adopté l'automatisation des entrepôts de GreyOrange, s'appuyant sur des systèmes robotisés de traitement des commandes. Convaincue par le succès de GreyOrange en matière d'amélioration des performances et de l'efficacité d'autres entreprises, H&M a intégré sa technologie. Les robots GreyOrange contribuent désormais à diverses tâches de l'entrepôt, reflétant l'engagement de H&M à rationaliser ses opérations grâce à des solutions d'automatisation innovantes.
  • En février 2022, H2O.ai a lancé des fonctionnalités H2O MLOps améliorées, améliorant les workflows de machine learning grâce à une meilleure explicabilité, une flexibilité et des options de configuration améliorées. Ces ajouts offrent aux utilisateurs un contrôle, une gouvernance et une évolutivité accrus, améliorant ainsi l'efficacité et la transparence de leurs processus de machine learning. Ces avancées renforcent l'engagement de H2O.ai à fournir aux utilisateurs des outils complets pour des opérations de machine learning rationalisées et efficaces.

Pour plus d'informations sur le rapport sur le marché espagnol de l'apprentissage automatique en tant que service, cliquez ici :  https://www.databridgemarketresearch.com/reports/spain-machine-learning-as-a-service-market


Client Testimonials