La creciente adopción del IoT en las operaciones industriales es un factor clave para el mercado del mantenimiento predictivo, ya que permite la monitorización y la recopilación de datos en tiempo real de equipos y maquinaria en diversas industrias. Los sensores del IoT capturan continuamente datos operativos críticos, como temperatura, vibración, presión y desgaste, que posteriormente se analizan mediante algoritmos predictivos avanzados para identificar posibles fallos en los equipos antes de que ocurran. Este enfoque proactivo permite a las empresas optimizar los programas de mantenimiento, reducir las paradas imprevistas, prolongar la vida útil de los equipos y reducir los costes operativos. A medida que las industrias adoptan cada vez más el IoT para la fabricación inteligente, la gestión energética y la optimización de la cadena de suministro, el mantenimiento predictivo se vuelve esencial para garantizar la eficiencia, la productividad y la fiabilidad de los activos en entornos con IoT.
Acceda al informe completo en https://www.databridgemarketresearch.com/reports/us-predictive-maintenance-market
Data Bridge Market Research analiza que se espera que el mercado de mantenimiento predictivo de EE. UU. alcance los USD 98,62 mil millones para 2034 desde USD 5,67 mil millones en 2023, creciendo con una CAGR del 29,9% en el período de pronóstico de 2024 a 2034.
Principales hallazgos del estudio
Creciente demanda de soluciones de Big Data y análisis
La creciente demanda de soluciones de big data y analítica está transformando significativamente el mercado del mantenimiento predictivo, ya que las organizaciones reconocen cada vez más el valor de la información basada en datos para optimizar la eficiencia operativa. Al aprovechar la analítica avanzada, las empresas pueden procesar grandes cantidades de datos en tiempo real provenientes de sensores del IoT y otras fuentes, lo que les permite identificar patrones, predecir fallos en los equipos y tomar decisiones de mantenimiento informadas. Este enfoque proactivo minimiza las paradas no planificadas, reduce los costes de mantenimiento y mejora el rendimiento general de los activos, impulsando una mayor inversión en tecnologías de big data. A medida que las industrias siguen adoptando la analítica de datos como un componente fundamental de sus estrategias de mantenimiento, se prevé un crecimiento sustancial del mercado del mantenimiento predictivo, impulsado por la necesidad de mejorar la fiabilidad y la eficacia operativa.
Alcance del informe y segmentación del mercado
Métrica del informe
|
Detalles
|
Período de pronóstico
|
2024 a 2034
|
Año base
|
2023
|
Años históricos
|
2022 (personalizable de 2016 a 2022)
|
Unidades cuantitativas
|
Ingresos en miles de USD
|
Segmentos cubiertos
|
Oferta (solución y servicios), modo de implementación (nube y en las instalaciones), aplicación (control de transmisión, cambio de aceite, inspección de neumáticos, reemplazo de refrigerante, freno, filtro de aire del motor, filtro de cabina y cambio de correa), tamaño de la empresa (organizaciones de gran tamaño y organización pequeña y mediana), tipo de vehículo (automóvil de pasajeros, vehículo comercial y vehículo de carretera), usuarios finales (propietarios de fugas, FMS, fabricantes, FMC, e individuos e individuos e individuos e individuos) e individuos)
|
Actores del mercado cubiertos
|
AISIN CORPORATION (Japón), PHINIA Inc. (China), KPIT (India), Microsoft (EE. UU.), Aptiv (Irlanda), Continental AG (Alemania), Robert Bosch GmbH (Alemania), Siemens AG (Alemania), SAP SE (Alemania), ZF Friedrichshafen AG (Alemania), Valeo Corporation (Francia), IBM (EE. UU.), Teletrac Navman (EE. UU.), Garrett Motion Inc. (EE. UU.), Pstream Security Ltd. (Reino Unido), Verizon (EE. UU.), Infineon Technologies AG (Alemania), Uptake Technologies Inc. (EE. UU.), Fluke Corporation (EE. UU.), PTC (EE. UU.), Rockwell Automation (EE. UU.), Embitel (India), Altair Engineering Inc. (EE. UU.), Honeywell International Inc. (EE. UU.), NEC Corporation (Japón), Emerson (EE. UU.), C3.AI (EE. UU.), Progress (EE. UU.), Fiix de Rockwell Automation Inc. (EE. UU.) y Ansys (EE. UU.), entre otros.
|
Puntos de datos cubiertos en el informe
|
Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado elaborado por el equipo de investigación de mercado de Data Bridge incluye un análisis en profundidad de expertos, análisis de importación/exportación, análisis de precios, análisis de consumo de producción y análisis pestle.
|
Análisis de segmentos
El mercado estadounidense de mantenimiento predictivo está segmentado en seis segmentos notables según la oferta, el modo de implementación, la aplicación, el tamaño de la empresa, el tipo de vehículo y el usuario final.
- Sobre la base de la oferta, el mercado estadounidense de mantenimiento predictivo se segmenta en soluciones y servicios.
En 2024, se espera que la solución domine el mercado de mantenimiento predictivo de EE. UU.
En 2024, se prevé que el segmento de soluciones domine el mercado con una cuota de mercado del 65,08% gracias a la adopción generalizada de software avanzado y tecnologías de IoT que permiten la monitorización en tiempo real y la obtención de información basada en datos. Estas soluciones ofrecen mayor eficiencia y escalabilidad, lo que permite a las empresas automotrices implementar el mantenimiento predictivo de forma más eficaz en flotas o vehículos individuales.
- Sobre la base del modo de implementación, el mercado de mantenimiento predictivo de EE. UU. Es segmentado en la nube y en las instalaciones
Se espera que en 2024, la nube domine el mercado de mantenimiento predictivo de EE. UU.
In 2024, cloud is expected to dominate the market with a 66.08% market share due to its scalability, flexibility, and cost-effectiveness, allowing automotive companies to easily access and analyze large volumes of data without significant upfront investments in infrastructure. Additionally, cloud solutions enable real-time updates and remote access, facilitating enhanced collaboration and quicker decision-making across teams.
- On the basis of application, the U.S. predictive maintenance market is segmented into transmission check-up, oil change, tire inspection, coolant replacement, brake, engine air filter, cabin filter, belt change and others. In 2024, transmission check-up is expected to dominate the market with a 19.87% market share
- On the basis of enterprise size, the U.S. predictive maintenance market is segmented into large size organizations and small & medium sized organization. In 2024, large size organizations are expected to dominate the market with a 62.51% market share
- On the basis of vehicle type, the U.S. predictive maintenance market is segmented into passenger car, commercial vehicle, and off road vehicle. In 2024, passenger car are expected to dominate the market with a 62.60% market share
- On the basis of end user, the U.S. predictive maintenance market is segmented into fleet owners, FMS, manufacturers, FMC, individual, and others. In 2024, fleet owners are expected to dominate the market with a 37.04% market share
Major Players
Data Bridge Market Research analyzes AISIN CORPORATION (Japan), PHINIA Inc. (China), KPIT (India), Microsoft (U.S.), and Aptiv (Ireland) as the major companies operating in the U.S. Predictive maintenance market.
Market Development
- In January 2024, Infineon Technologies AG and Aurora Labs have teamed up to introduce AI-powered predictive maintenance solutions for the automotive sector, aimed at boosting the safety and reliability of essential components like steering, braking, and airbags. This partnership enhances Infineon’s predictive maintenance offerings by leveraging AI-driven real-time monitoring and failure response with AURIX TC4x microcontrollers, enabling automotive manufacturers to improve vehicle safety and performance over the long term
- In February 2020, PTC has partnered with Senseye to integrate its predictive maintenance software, Senseye PdM, with the ThingWorx Industrial IoT platform, allowing users to automatically monitor assets and anticipate machine failures. This collaboration strengthens PTC's predictive maintenance capabilities, enabling ThingWorx users to quickly access insights from their machine data, which in turn enhances operational efficiency, minimizes unplanned downtime, and reduces maintenance costs
For more detailed information about the U.S. Predictive maintenance market report, click here – https://www.databridgemarketresearch.com/reports/us-predictive-maintenance-market


